1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
| use std::cmp::min;
// 选择排序
fn select_sort(arr: &mut [i32]) {
let n = arr.len();
for i in 0..n {
let mut min_index = i;
for j in i + 1..n {
if arr[min_index] > arr[j] {
min_index = j;
}
}
if min_index != i {
(arr[i], arr[min_index]) = (arr[min_index], arr[i]);
}
}
}
// 冒泡排序
fn bubble_sort(arr: &mut [i32]) {
let n = arr.len();
for i in 0..n {
for j in i + 1..n {
if arr[i] > arr[j] {
(arr[i], arr[j]) = (arr[j], arr[i])
}
}
}
}
// 插入排序
fn insert_sort(arr: &mut [i32]) {
let n = arr.len();
for i in 1..n {
let temp = arr[i];
let mut j = i;
while j > 0 && arr[j - 1] > temp {
arr[j] = arr[j - 1];
j -= 1;
}
arr[j] = temp;
}
}
// 希尔排序
fn shell_sort(arr: &mut [i32]) {
let n = arr.len();
let mut gap = n / 2;
while gap > 0 {
for i in gap..n {
let temp = arr[i];
let mut j = i;
while j >= gap && arr[j - gap] > temp {
arr[j] = arr[j - gap];
j -= gap;
}
arr[j] = temp;
}
gap = gap / 2;
}
}
// 归并排序(循环版本)
fn merge_sort_loop(arr: &mut [i32]) {
let n = arr.len();
if n == 1 {
return;
}
let mut size = 1;
while size < n {
for left in (0..n).step_by(2 * size) {
let mid = min(left + size, n);
let right = min(left + 2 * size, n);
merge_loop(arr, left, mid, right);
}
size *= 2;
}
}
fn merge_loop(arr: &mut [i32], left: usize, mid: usize, right: usize) {
let mut temp = vec![0; right - left];
let (mut i, mut j, mut k) = (left, mid, 0);
while i < mid && j < right {
if arr[i] <= arr[j] {
temp[k] = arr[i];
i += 1;
} else {
temp[k] = arr[j];
j += 1;
}
k += 1;
}
while i < mid {
temp[k] = arr[i];
k += 1;
i += 1;
}
while j < right {
temp[k] = arr[j];
k += 1;
j += 1;
}
for i in 0..temp.len() {
arr[left + i] = temp[i];
}
}
// 归并排序(递归版本)
fn merge_sort_recursion(arr: &mut [i32]) {
fn sort_help(arr: &mut [i32], left: usize, right: usize) {
if right - left <= 1 {
return;
}
let mid = (left + right) / 2;
sort_help(arr, left, mid);
sort_help(arr, mid, right);
merge_recursion(arr, left, mid, right);
}
sort_help(arr, 0, arr.len())
}
fn merge_recursion(arr: &mut [i32], left: usize, mid: usize, right: usize) {
let left_part = arr[left..mid].to_vec();
let right_part = arr[mid..right].to_vec();
let (mut i, mut j, mut k) = (0, 0, left);
while i < left_part.len() && j < right_part.len() {
if left_part[i] <= right_part[j] {
arr[k] = left_part[i];
i += 1;
} else {
arr[k] = right_part[j];
j += 1;
}
k += 1;
}
while i < left_part.len() {
arr[k] = left_part[i];
i += 1;
k += 1;
}
while j < right_part.len() {
arr[k] = right_part[j];
j += 1;
k += 1;
}
}
fn quick_sort_recursion(arr: &mut [i32]) {
if arr.len() <= 1 {
return;
}
let pivot_index = partition_recursion(arr);
// 递归调用时直接对切片进行可变借用
quick_sort_recursion(&mut arr[..pivot_index]);
quick_sort_recursion(&mut arr[pivot_index + 1..]);
}
fn partition_recursion(arr: &mut [i32]) -> usize {
let pivot = arr[0];
let mut i = 1;
for j in 1..arr.len() {
if arr[j] < pivot {
arr.swap(i, j);
i += 1;
}
}
arr.swap(0, i - 1);
i - 1
}
fn quick_sort_loop(arr: &mut [i32]) {
let mut stack: Vec<(usize, usize)> = vec![(0, arr.len())];
while let Some((low, high)) = stack.pop() {
if low < high {
let pivot_index = partition_loop(arr, low, high);
stack.push((low, pivot_index));
stack.push((pivot_index + 1, high));
}
}
}
fn partition_loop(arr: &mut [i32], low: usize, high: usize) -> usize {
let pivot = arr[low];
let mut left = low + 1;
let mut right = high;
loop {
while left < high && arr[left] <= pivot {
left += 1;
}
while right > low && arr[right - 1] >= pivot {
right -= 1;
}
if left >= right {
break;
} else {
arr.swap(left, right - 1);
}
}
arr.swap(low, right - 1);
right - 1
}
#[cfg(test)]
mod tests {
use super::*;
use rand::Rng;
use std::time::Instant;
// 定义排序函数的类型
type SortFn = fn(&mut [i32]);
fn sorting_algorithms() -> Vec<(&'static str, SortFn)> {
vec![
("select_sort", select_sort),
("bubble_sort", bubble_sort),
("insert_sort", insert_sort),
("shell_sort", shell_sort),
("merge_sort_loop", merge_sort_loop),
("merge_sort_recursion", merge_sort_recursion),
("quick_sort_recursion", quick_sort_recursion),
// ("quick_sort_loop", quick_sort_loop),
]
}
// 运行排序测试
fn run_sort_test(sort_fn: SortFn) {
let mut vec1 = vec![64, 25, 12, 22, 11];
sort_fn(&mut vec1);
assert_eq!(vec1, vec![11, 12, 22, 25, 64]);
let mut vec2 = vec![5, 4, 3, 2, 1];
sort_fn(&mut vec2);
assert_eq!(vec2, vec![1, 2, 3, 4, 5]);
let mut vec3 = vec![1, 2, 3, 4, 5];
sort_fn(&mut vec3);
assert_eq!(vec3, vec![1, 2, 3, 4, 5]); // Already sorted
let mut vec4 = vec![];
sort_fn(&mut vec4);
assert_eq!(vec4, vec![]); // Empty vector
let mut vec5 = vec![42];
sort_fn(&mut vec5);
assert_eq!(vec5, vec![42]); // Single element
}
#[test]
fn correct_test() {
for &(_, sort_fn) in sorting_algorithms().iter() {
run_sort_test(sort_fn);
}
}
// 性能测试函数
fn run_performance_test(
sort_fn: SortFn,
name: &str,
size: usize,
) -> (String, std::time::Duration) {
let mut vec: Vec<i32> = (0..size)
.map(|_| rand::rng().random_range(1..=size as i32))
.collect(); // 生成随机数组
let start = Instant::now();
sort_fn(&mut vec);
let duration = start.elapsed();
(name.to_string(), duration)
}
#[test]
fn performance_tests() {
let sizes = [1000, 10000]; // 定义测试的大小
for &size in &sizes {
println!("Performance tests for size: {}", size);
let mut results = Vec::new();
// 运行每个排序函数并收集结果
for &(name, sort_fn) in sorting_algorithms().iter() {
let mut total_duration = std::time::Duration::new(0, 0);
// 进行三次测试
for _ in 0..3 {
let (_, duration) = run_performance_test(sort_fn, name, size);
total_duration += duration;
}
// 计算平均时间
let avg_duration = total_duration / 3;
results.push((name.to_string(), avg_duration));
}
// 按执行时间排序
results.sort_by(|a, b| a.1.cmp(&b.1));
// 输出排序结果
for (name, duration) in results {
println!("{} took {:?} to sort {} elements.", name, duration, size);
}
}
}
}
|