卓拙科技

  1. 笔试

工程题,给一个测试文件,实现代码:

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
package main

import (
	"crypto/rand"
	"crypto/sha256"
	"encoding/binary"
	"encoding/hex"
	"errors"
	"fmt"
	"hash"
	"io"
	"log"
	"math/bits"
	"net"
	"sync"
	"sync/atomic"
)

var (
	pool = new(BufferPool)
)

// Conn 是你需要实现的一种连接类型,它支持下面描述的若干接口;
// 为了实现这些接口,你需要设计一个基于 TCP 的简单协议;
type Conn struct {
	c      net.Conn
	nextID uint32
	lock   sync.Mutex
	err    error

	closeChan chan struct{}

	writeDoneChan chan struct{}
	writeBuffChan chan []byte
	readDoneChan  chan struct{}
	readBuffChan  chan []byte
	acceptChan    chan *Stream

	streamLock sync.Mutex
	streams    map[uint32]*Stream
	closeOnce  sync.Once
}

// Send 传入一个 key 表示发送者将要传输的数据对应的标识;
// 返回 writer 可供发送者分多次写入大量该 key 对应的数据;
// 当发送者已将该 key 对应的所有数据写入后,调用 writer.Close 告知接收者:该 key 的数据已经完全写入;
func (conn *Conn) Send(key string) (io.WriteCloser, error) {
	s := &Stream{
		key:      key,
		streamID: conn.nextID,
		state:    Open,
		sendChan: conn.writeBuffChan,
		recvChan: make(chan []byte, 64),
	}
	atomic.AddUint32(&conn.nextID, 1)
	log.Println("open new stream", s.streamID)
	conn.streamLock.Lock()
	conn.streams[s.streamID] = s
	conn.streamLock.Unlock()

	buff := pool.Get(HeaderSize + len(key))
	h := encode(OpenStream, s.streamID, uint32(len(key)))
	copy(buff, h[:])
	copy(buff[HeaderSize:], key)

	select {
	case conn.writeBuffChan <- buff:
		return s, nil
	case <-conn.closeChan:
		return nil, errors.New("connection closed")
	}
}

// Receive 返回一个 key 表示接收者将要接收到的数据对应的标识;
// 返回的 reader 可供接收者多次读取该 key 对应的数据;
// 当 reader 返回 io.EOF 错误时,表示接收者已经完整接收该 key 对应的数据;
func (conn *Conn) Receive() (key string, reader io.Reader, err error) {
	select {
	case stream := <-conn.acceptChan:
		return stream.key, stream, nil
	case <-conn.closeChan:
		conn.lock.Lock()
		err = conn.err
		conn.lock.Unlock()
		return "", nil, err
	}
}

// Close 关闭你实现的连接对象及其底层的 TCP 连接
func (conn *Conn) Close() {
	conn.closeOnce.Do(func() {
		close(conn.closeChan)
		conn.streamLock.Lock()
		defer conn.streamLock.Unlock()
		for _, stream := range conn.streams {
			stream.Close()
		}

		<-conn.writeDoneChan
		conn.c.Close()
		<-conn.readDoneChan
	})
}

func (conn *Conn) sendLoop() {
	defer close(conn.writeDoneChan)
	for {
		select {
		case writeBuff := <-conn.writeBuffChan:
			size := len(writeBuff)
			offset := 0
			for offset < size {
				write, err := conn.c.Write(writeBuff)
				if err != nil {
					log.Println("write error:", err)
					go conn.Close()
					conn.lock.Lock()
					conn.err = err
					conn.lock.Unlock()
					return
				}
				offset += write
			}
		default:
			select {
			case _, ok := <-conn.closeChan:
				if !ok {
					log.Println("connection closed")
					return
				}
			default:
			}
		}
	}
}

func (conn *Conn) recvLoop() {
	defer close(conn.readDoneChan)
	var h header
loop:
	for {
		_, err := io.ReadFull(conn.c, h[:])
		if err != nil {
			log.Println("read error:", err)
			go conn.Close()
			conn.lock.Lock()
			conn.err = err
			conn.lock.Unlock()
			return
		}

		if h.Version() != protoVersion {
			log.Println("invalid version:", h.Version())
			return
		}

		id := h.StreamID()
		switch MsgType(h.MsgType()) {
		case OpenStream:
			if id != conn.nextID {
				log.Println("invalid stream id ", id)
				continue loop
			}

			atomic.AddUint32(&conn.nextID, 1)

			key := pool.Get(int(h.Length()))
			read, err := io.ReadFull(conn.c, key)
			if err != nil {
				log.Println("read error:", err)
				return
			}

			if read != int(h.Length()) {
				log.Println("invalid read length:", read)
				return
			}

			stream := &Stream{
				key:      string(key),
				streamID: id,
				state:    Open,
				sendChan: conn.writeBuffChan,
				recvChan: make(chan []byte, 64),
			}

			conn.streamLock.Lock()
			conn.streams[id] = stream
			conn.streamLock.Unlock()

			log.Printf("receive new stream: id: %d, key: %s", id, stream.key)
			select {
			case conn.acceptChan <- stream:
			case <-conn.closeChan:
				return
			}

		case DataFrame:
			conn.streamLock.Lock()
			stream, ok := conn.streams[id]
			conn.streamLock.Unlock()
			if !ok || stream == nil {
				log.Println("invalid stream id ", id)
				continue loop
			}

			buff := pool.Get(int(h.Length()))
			read, err := io.ReadFull(conn.c, buff)
			if err != nil {
				log.Println("read error:", err)
				return
			}

			if read != int(h.Length()) {
				log.Println("invalid read length:", read)
				return
			}

			select {
			case stream.recvChan <- buff:
			case <-conn.closeChan:
				return
			}
		case CloseStream:
			conn.streamLock.Lock()
			stream, ok := conn.streams[id]
			conn.streamLock.Unlock()
			if !ok || stream == nil {
				log.Println("invalid stream id ", id)
				continue loop
			}
			log.Printf("close stream: id: %d, key: %s", id, stream.key)
			stream.lock.Lock()
			stream.state = Close
			stream.lock.Unlock()
		default:
			log.Println("invalid msg type:", MsgType(h.MsgType()))
		}
	}
}

// NewConn 从一个 TCP 连接得到一个你实现的连接对象
func NewConn(conn net.Conn) *Conn {
	c := &Conn{
		c:             conn,
		nextID:        0,
		closeChan:     make(chan struct{}),
		writeDoneChan: make(chan struct{}),
		writeBuffChan: make(chan []byte, 64),
		readDoneChan:  make(chan struct{}),
		readBuffChan:  make(chan []byte, 64),
		acceptChan:    make(chan *Stream, 10),
		streamLock:    sync.Mutex{},
		streams:       make(map[uint32]*Stream),
	}
	go c.sendLoop()
	go c.recvLoop()
	return c
}

type MsgType uint8

const (
	Unknown MsgType = iota
	OpenStream
	DataFrame
	CloseStream
)

const (
	MaxDataLength    = 1<<32 - 1
	protoVersion     = 1
	SizeOfVersion    = 1
	SizeOfMsgType    = 1
	SizeOfStreamID   = 4
	SizeOfDataLength = 4
	HeaderSize       = SizeOfVersion + SizeOfMsgType + SizeOfStreamID + SizeOfDataLength
)

type StreamState uint8

const (
	Open StreamState = iota
	Close
)

type header [HeaderSize]byte

func (h header) Version() uint8 {
	return h[0]
}
func (h header) MsgType() uint8 {
	return h[1]
}

func (h header) StreamID() uint32 {
	return binary.BigEndian.Uint32(h[2:6])
}

func (h header) Length() uint32 {
	return binary.BigEndian.Uint32(h[6:10])
}

func (h header) String() string {
	return fmt.Sprintf("Vsn:%d Type:%d StreamID:%d Length:%d",
		h.Version(), h.MsgType(), h.StreamID(), h.Length())
}

func encode(msgType MsgType, streamID uint32, length uint32) header {
	var h header
	h[0] = protoVersion
	h[1] = byte(msgType)
	binary.BigEndian.PutUint32(h[2:6], streamID)
	binary.BigEndian.PutUint32(h[6:10], length)
	return h
}

type Stream struct {
	value    atomic.Value
	key      string
	streamID uint32
	lock     sync.Mutex
	err      error
	state    StreamState
	sendChan chan []byte

	lastReadOffset int
	lastReadBuff   []byte
	recvChan       chan []byte
}

func (s *Stream) Close() error {
	buf := pool.Get(HeaderSize)
	h := encode(CloseStream, s.streamID, 0)
	copy(buf, h[:])
	select {
	case s.sendChan <- buf:
		s.lock.Lock()
		s.state = Close
		s.lock.Unlock()
	}
	return nil
}

func (s *Stream) Write(buff []byte) (n int, err error) {
	s.lock.Lock()
	state := s.state
	s.lock.Unlock()
	if state == Close {
		return 0, fmt.Errorf("stream closed")
	}
	if s.err != nil {
		return 0, s.err
	}

	writeLen := len(buff)
	offset := 0

	for offset < writeLen {
		size := min(MaxDataLength, len(buff)-offset)
		buf := pool.Get(HeaderSize + size)
		h := encode(DataFrame, s.streamID, uint32(size))
		copy(buf, h[:])
		copy(buf[HeaderSize:], buff[offset:offset+size])

		select {
		case s.sendChan <- buf:
			offset += size
		}
	}
	return offset, nil
}

func (s *Stream) Read(buff []byte) (n int, err error) {
	size := len(buff)
	if len(s.lastReadBuff) != 0 {
		copy(buff, s.lastReadBuff[s.lastReadOffset:s.lastReadOffset+size])
		s.lastReadOffset += size
		if s.lastReadOffset == len(s.lastReadBuff) {
			s.lastReadOffset = 0
			pool.Put(s.lastReadBuff)
			s.lastReadBuff = nil
		}
		return size, nil
	}

	if s.err != nil {
		return 0, s.err
	}

	for {
		select {
		case buf := <-s.recvChan:
			if len(buf) <= size {
				copy(buff, buf)
				pool.Put(buf)
				return len(buf), nil
			} else {
				copy(buff, buf[:size])
				s.lastReadOffset = size
				s.lastReadBuff = buf
				return size, nil
			}
		default:
			s.lock.Lock()
			state := s.state
			s.lock.Unlock()
			if state == Close {
				return 0, io.EOF
			}
		}
	}
}

// BufferPool

type BufferPool struct {
	pools [32]sync.Pool // a list of singlePools
	ptrs  sync.Pool
}

type bufp struct {
	buf []byte
}

func (p *BufferPool) Get(length int) []byte {
	if length == 0 {
		return nil
	}
	// Calling this function with a negative length is invalid.
	// make will panic if length is negative, so we don't have to.
	if length > MaxDataLength || length < 0 {
		return make([]byte, length)
	}
	idx := nextLogBase2(uint32(length))
	if ptr := p.pools[idx].Get(); ptr != nil {
		bp := ptr.(*bufp)
		buf := bp.buf[:uint32(length)]
		bp.buf = nil
		p.ptrs.Put(ptr)
		return buf
	}
	return make([]byte, 1<<idx)[:uint32(length)]
}

func (p *BufferPool) Put(buf []byte) {
	capacity := cap(buf)
	if capacity == 0 || capacity > MaxDataLength {
		return // drop it
	}
	idx := prevLogBase2(uint32(capacity))
	var bp *bufp
	if ptr := p.ptrs.Get(); ptr != nil {
		bp = ptr.(*bufp)
	} else {
		bp = new(bufp)
	}
	bp.buf = buf
	p.pools[idx].Put(bp)
}

// Log of base two, round up (for v > 0).
func nextLogBase2(v uint32) uint32 {
	return uint32(bits.Len32(v - 1))
}

// Log of base two, round down (for v > 0)
func prevLogBase2(num uint32) uint32 {
	next := nextLogBase2(num)
	if num == (1 << next) {
		return next
	}
	return next - 1
}

// 除了上面规定的接口,你还可以自行定义新的类型,变量和函数以满足实现需求

// ////////////////////////////////////////////
// /////// 接下来的代码为测试代码,请勿修改 /////////
// ////////////////////////////////////////////

// 连接到测试服务器,获得一个你实现的连接对象
func dial(serverAddr string) *Conn {
	conn, err := net.Dial("tcp", serverAddr)
	if err != nil {
		panic(err)
	}
	return NewConn(conn)
}

// 启动测试服务器
func startServer(handle func(*Conn)) net.Listener {
	ln, err := net.Listen("tcp", ":8080")
	if err != nil {
		panic(err)
	}
	go func() {
		for {
			conn, err := ln.Accept()
			if err != nil {
				fmt.Println("[WARNING] ln.Accept", err)
				return
			}
			go handle(NewConn(conn))
		}
	}()
	return ln
}

// 简单断言
func assertEqual[T comparable](actual T, expected T) {
	if actual != expected {
		panic(fmt.Sprintf("actual:%v expected:%v\n", actual, expected))
	}
}

// 简单 case:单连接,双向传输少量数据
func testCase0() {
	const (
		key  = "Bible"
		data = `Then I heard the voice of the Lord saying, “Whom shall I send? And who will go for us?”
And I said, “Here am I. Send me!”
Isaiah 6:8`
	)
	ln := startServer(func(conn *Conn) {
		// 服务端等待客户端进行传输
		_key, reader, err := conn.Receive()
		if err != nil {
			panic(err)
		}
		assertEqual(_key, key)
		dataB, err := io.ReadAll(reader)
		if err != nil {
			panic(err)
		}
		assertEqual(string(dataB), data)

		// 服务端向客户端进行传输
		writer, err := conn.Send(key)
		if err != nil {
			panic(err)
		}
		n, err := writer.Write([]byte(data))
		if err != nil {
			panic(err)
		}
		if n != len(data) {
			panic(n)
		}
		conn.Close()
	})
	//goland:noinspection GoUnhandledErrorResult
	defer ln.Close()

	conn := dial(ln.Addr().String())
	// 客户端向服务端传输
	writer, err := conn.Send(key)
	if err != nil {
		panic(err)
	}
	n, err := writer.Write([]byte(data))
	if n != len(data) {
		panic(n)
	}
	err = writer.Close()
	if err != nil {
		panic(err)
	}
	// 客户端等待服务端传输
	_key, reader, err := conn.Receive()
	if err != nil {
		panic(err)
	}
	assertEqual(_key, key)
	dataB, err := io.ReadAll(reader)
	if err != nil {
		panic(err)
	}
	assertEqual(string(dataB), data)

	conn.Close()
}

// 生成一个随机 key
func newRandomKey() string {
	buf := make([]byte, 8)
	_, err := rand.Read(buf)
	if err != nil {
		panic(err)
	}
	return hex.EncodeToString(buf)
}

// 读取随机数据,并返回随机数据的校验和:用于验证数据是否完整传输
func readRandomData(reader io.Reader, hash hash.Hash) (checksum string) {
	hash.Reset()
	var buf = make([]byte, 23<<20) // 调用者读取时的 buf 大小不是固定的,你的实现中不可假定 buf 为固定值
	for {
		n, err := reader.Read(buf)
		if err == io.EOF {
			break
		}
		if err != nil {
			panic(err)
		}
		_, err = hash.Write(buf[:n])
		if err != nil {
			panic(err)
		}
	}
	checksum = hex.EncodeToString(hash.Sum(nil))
	return checksum
}

// 写入随机数据,并返回随机数据的校验和:用于验证数据是否完整传输
func writeRandomData(writer io.Writer, hash hash.Hash) (checksum string) {
	hash.Reset()
	const (
		dataSize = 500 << 20 // 一个 key 对应 500MB 随机二进制数据,dataSize 也可以是其他值,你的实现中不可假定 dataSize 为固定值
		bufSize  = 1 << 20   // 调用者写入时的 buf 大小不是固定的,你的实现中不可假定 buf 为固定值
	)
	var (
		buf  = make([]byte, bufSize)
		size = 0
	)
	for i := 0; i < dataSize/bufSize; i++ {
		_, err := rand.Read(buf)
		if err != nil {
			panic(err)
		}
		_, err = hash.Write(buf)
		if err != nil {
			panic(err)
		}
		n, err := writer.Write(buf)
		if err != nil {
			panic(err)
		}
		size += n
	}
	if size != dataSize {
		panic(size)
	}
	checksum = hex.EncodeToString(hash.Sum(nil))
	return checksum
}

// 复杂 case:多连接,双向传输,大量数据,多个不同的 key
func testCase1() {
	var (
		mapKeyToChecksum = map[string]string{}
		lock             sync.Mutex
	)
	ln := startServer(func(conn *Conn) {
		// 服务端等待客户端进行传输
		key, reader, err := conn.Receive()
		if err != nil {
			panic(err)
		}
		var (
			h         = sha256.New()
			_checksum = readRandomData(reader, h)
		)
		lock.Lock()
		checksum, keyExist := mapKeyToChecksum[key]
		lock.Unlock()
		if !keyExist {
			panic(fmt.Sprintln(key, "not exist"))
		}
		assertEqual(_checksum, checksum)

		// 服务端向客户端连续进行 2 次传输
		for _, key := range []string{newRandomKey(), newRandomKey()} {
			writer, err := conn.Send(key)
			if err != nil {
				panic(err)
			}
			checksum := writeRandomData(writer, h)
			lock.Lock()
			mapKeyToChecksum[key] = checksum
			lock.Unlock()
			err = writer.Close() // 表明该 key 的所有数据已传输完毕
			if err != nil {
				panic(err)
			}
		}
		conn.Close()
	})
	//goland:noinspection GoUnhandledErrorResult
	defer ln.Close()

	conn := dial(ln.Addr().String())
	// 客户端向服务端传输
	var (
		key = newRandomKey()
		h   = sha256.New()
	)
	writer, err := conn.Send(key)
	if err != nil {
		panic(err)
	}
	checksum := writeRandomData(writer, h)
	lock.Lock()
	mapKeyToChecksum[key] = checksum
	lock.Unlock()
	err = writer.Close()
	if err != nil {
		panic(err)
	}

	// 客户端等待服务端的多次传输
	keyCount := 0
	for {
		key, reader, err := conn.Receive()
		if err == io.EOF {
			// 服务端所有的数据均传输完毕,关闭连接
			break
		}
		if err != nil {
			panic(err)
		}
		_checksum := readRandomData(reader, h)
		lock.Lock()
		checksum, keyExist := mapKeyToChecksum[key]
		lock.Unlock()
		if !keyExist {
			panic(fmt.Sprintln(key, "not exist"))
		}
		assertEqual(_checksum, checksum)
		keyCount++
	}
	assertEqual(keyCount, 2)
	conn.Close()
}

func main() {
	testCase0()
	testCase1()
}

结果:挂,因为写的时候没有考虑 data race

Licensed under CC BY-NC-SA 4.0
使用 Hugo 构建
主题 StackJimmy 设计