跳转至
阅读量:

sync.Pool 详解

sync.Pool是 Go 官方提供的对象缓存池,能够帮助我们缓存暂时不用的对象,直到下次取出,避免重复创建对象。

结构

type Pool struct {
    noCopy noCopy

    local     unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
    localSize uintptr        // size of the local array

    victim     unsafe.Pointer // local from previous cycle
    victimSize uintptr        // size of victims array

    // New optionally specifies a function to generate
    // a value when Get would otherwise return nil.
    // It may not be changed concurrently with calls to Get.
    New func() any
}

type poolLocal struct {
    poolLocalInternal

    // Prevents false sharing on widespread platforms with
    // 128 mod (cache line size) = 0 .
    pad [128 - unsafe.Sizeof(poolLocalInternal{})%128]byte
}

// Local per-P Pool appendix.
type poolLocalInternal struct {
    private any       // Can be used only by the respective P.
    shared  poolChain // Local P can pushHead/popHead; any P can popTail.
}

Pool 结构是主要结构体:

  • noCopy:防止 Pool 被拷贝;
  • local:poolLocal 数组指针,数组长度和 P 相关(即 GMP 模型中的 P);
  • localSize:local 数组的长度;
  • victim:上一轮 GC 时 local 的值;
  • victimSize:victim 数组的长度;
  • New:当对象池种没有对象时,创建新对象的回调函数。

poolLocal结构主要用于对象缓存,是对 poolLocalInternal结构的封装:

poolLocalInternal对象存储主要实现:

  • private:缓存对象,同时只能被一个 P 访问;
  • shared:共享缓存对象,同时可以被多个 P 访问。

Put方法

func (p *Pool) Put(x any) {
    // 当放入的对象为 nil 时,函数直接返回,不执行放入对象池操作
    if x == nil {
        return
    }

    // race 相关代码是为了通过竞态检测,这里不用分析
    if race.Enabled {
        if fastrandn(4) == 0 {
            // Randomly drop x on floor.
            return
        }
        race.ReleaseMerge(poolRaceAddr(x))
        race.Disable()
    }

    // 返回一个 poolLocal 对象
    l, _ := p.pin()
    // 如果 poolLocal 的 private 为空,则直接将对象赋值给 private
    if l.private == nil {
        l.private = x
    } else {
        // 如果 poolLoca 的 private 不为空,则将对象放入共享队列
        l.shared.pushHead(x)
    }

    // 将当前 G 与 M 解锁
    runtime_procUnpin()
    if race.Enabled {
        race.Enable()
    }
}
func (p *Pool) pin() (*poolLocal, int) {
    // 将当前 G 和 M 绑定,并获取目前 M 绑定的 P 的 ID
    pid := runtime_procPin()

    // In pinSlow we store to local and then to localSize, here we load in opposite order.
    // Since we've disabled preemption, GC cannot happen in between.
    // Thus here we must observe local at least as large localSize.
    // We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).

    // 原子操作取出 localSize 
    s := runtime_LoadAcquintptr(&p.localSize) // load-acquire
    // 取出 local
    l := p.local                              // load-consume

    // 如果 pid 小于 s,则直接将 l 转换为 poolLocal
    if uintptr(pid) < s {
        return indexLocal(l, pid), pid
    }
    // 如果 pid 大于 s,则代表要么是还未进行初始化,要么是 runtime.GOMAXPROCS() 发生了变化,需要重新进行赋值
    return p.pinSlow()
}

// 类型转换
func indexLocal(l unsafe.Pointer, i int) *poolLocal {
    lp := unsafe.Pointer(uintptr(l) + uintptr(i)*unsafe.Sizeof(poolLocal{}))
    return (*poolLocal)(lp)
}
func (p *Pool) pinSlow() (*poolLocal, int) {
    // Retry under the mutex.
    // Can not lock the mutex while pinned.
    // 解除绑定
    // 先解锁再加锁,避免出现死锁
    runtime_procUnpin()
    // 加上全局锁
    allPoolsMu.Lock()
    defer allPoolsMu.Unlock()
    // 重新绑定
    pid := runtime_procPin()
    // poolCleanup won't be called while we are pinned.
    // 重新进行判断
    s := p.localSize
    l := p.local
    if uintptr(pid) < s {
        return indexLocal(l, pid), pid
    }
    if p.local == nil {
        allPools = append(allPools, p)
    }
    // If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
    size := runtime.GOMAXPROCS(0)
    local := make([]poolLocal, size)
    // 原子操作更换 p.local 的值
    atomic.StorePointer(&p.local, unsafe.Pointer(&local[0])) // store-release
    // 原子操作存储 p.localSize 值
    runtime_StoreReluintptr(&p.localSize, uintptr(size))     // store-release
    return &local[pid], pid
}

Get方法

func (p *Pool) Get() any {
    if race.Enabled {
        race.Disable()
    }
    // 返回当前 M 绑定的 P 的ID号以及所对应的 poolLocal
    l, pid := p.pin()
    // 获取 poolLocal 上的 private,然后将其置空
    x := l.private
    l.private = nil

    if x == nil {
        // Try to pop the head of the local shard. We prefer
        // the head over the tail for temporal locality of
        // reuse.
        // 如果变量为空,则尝试从自身共享 shared 上拿去一个
        x, _ = l.shared.popHead()

        // 如果依然为空,则尝试从其他 P 的 poolLocal 中拿取一个
        if x == nil {
            x = p.getSlow(pid)
        }
    }

    // 解绑 P
    runtime_procUnpin()
    if race.Enabled {
        race.Enable()
        if x != nil {
            race.Acquire(poolRaceAddr(x))
        }
    }

    // 如果整个对象池中都不存在数据,则尝试调用 New 方法创建一个
    if x == nil && p.New != nil {
        x = p.New()
    }
    return x
}
func (p *Pool) getSlow(pid int) any {
    // See the comment in pin regarding ordering of the loads.
    // 加载 local 和 size
    size := runtime_LoadAcquintptr(&p.localSize) // load-acquire
    locals := p.local                            // load-consume

    // Try to steal one element from other procs.
    // 从其他 P 对应的 poolLocal 的共享对象中尝试拿去一个
    for i := 0; i < int(size); i++ {
        l := indexLocal(locals, (pid+i+1)%int(size))
        if x, _ := l.shared.popTail(); x != nil {
            return x
        }
    }

    // Try the victim cache. We do this after attempting to steal
    // from all primary caches because we want objects in the
    // victim cache to age out if at all possible.
    // 如果从当前 local 拿不到数据,则从老的 victim 中尝试拿数据
    size = atomic.LoadUintptr(&p.victimSize)
    if uintptr(pid) >= size {
        return nil
    }
    locals = p.victim
    l := indexLocal(locals, pid)
    if x := l.private; x != nil {
        l.private = nil
        return x
    }
    for i := 0; i < int(size); i++ {
        l := indexLocal(locals, (pid+i)%int(size))
        if x, _ := l.shared.popTail(); x != nil {
            return x
        }
    }

    // Mark the victim cache as empty for future gets don't bother
    // with it.
    // 如果从老的数据中依然取不到数据,则下次将 victimSize 置空,避免下次再尝试从 victim 中取数据
    atomic.StoreUintptr(&p.victimSize, 0)

    return nil
}

poolChain

poolChain是一个链头非并发安全,链尾并发安全的链表。

结构

// 双向链表
type poolChain struct {
    head *poolChainElt
    tail *poolChainElt
}

// 环形队列
type poolChainElt struct {
    poolDequeue
    next, prev *poolChainElt
}

type poolDequeue struct {
    headTail uint64
    vals []eface
}

type eface struct {
    typ, val unsafe.Pointer
}

方法

func (c *poolChain) pushHead(val any) {
    d := c.head
    // 初始化链表
    if d == nil {
        // Initialize the chain.
        const initSize = 8 // Must be a power of 2
        d = new(poolChainElt)
        d.vals = make([]eface, initSize)
        // 头节点非互斥赋值
        // 在 sync.Pool 中,头节点是被单 goroutine 用于数据访问的,因此不用做互斥
        c.head = d
        // 尾节点互斥赋值
        // 在 sync.Pool 中,尾节点可能会被多个 goroutine 用于数据访问,因此需要做互斥
        storePoolChainElt(&c.tail, d)
    }

    // 将数据放入环形队列头部
    // 当环形队列满时会返回 False
    if d.pushHead(val) {
        return
    }

    // The current dequeue is full. Allocate a new one of twice
    // the size.
    // 创建一个新环形队列,新的环形队列的容量是上一个的两倍,但是不能超过dequeueLimit
    newSize := len(d.vals) * 2
    if newSize >= dequeueLimit {
        // Can't make it any bigger.
        newSize = dequeueLimit
    }

    // 添加新节点
    d2 := &poolChainElt{prev: d}
    d2.vals = make([]eface, newSize)
    c.head = d2
    storePoolChainElt(&d.next, d2)
    d2.pushHead(val)
}

func (c *poolChain) popHead() (any, bool) {
    d := c.head
    // 遍历链表取值
    for d != nil {
        if val, ok := d.popHead(); ok {
            return val, ok
        }
        d = loadPoolChainElt(&d.prev)
    }
    return nil, false
}

func (c *poolChain) popTail() (any, bool) {
    // 互斥取出尾节点地址
    d := loadPoolChainElt(&c.tail)
    if d == nil {
        return nil, false
    }

    // 循环遍历节点,弹出数据,直到找到尾节点
    for {
        d2 := loadPoolChainElt(&d.next)

        if val, ok := d.popTail(); ok {
            return val, ok
        }

        if d2 == nil {
            return nil, false
        }

        // 删除空节点
        if atomic.CompareAndSwapPointer((*unsafe.Pointer)(unsafe.Pointer(&c.tail)), unsafe.Pointer(d), unsafe.Pointer(d2)) {
            storePoolChainElt(&d2.prev, nil)
        }
        d = d2
    }
}
// 解析头尾节点索引
func (d *poolDequeue) unpack(ptrs uint64) (head, tail uint32) {
    const mask = 1<<dequeueBits - 1
    head = uint32((ptrs >> dequeueBits) & mask)
    tail = uint32(ptrs & mask)
    return
}

// 封装头尾节点索引
func (d *poolDequeue) pack(head, tail uint32) uint64 {
    const mask = 1<<dequeueBits - 1
    return (uint64(head) << dequeueBits) | uint64(tail&mask)
}

func (d *poolDequeue) pushHead(val any) bool {
    ptrs := atomic.LoadUint64(&d.headTail)
    head, tail := d.unpack(ptrs)
    // 如果首尾地址相同代表循环队列已经满了
    if (tail+uint32(len(d.vals)))&(1<<dequeueBits-1) == head {
        // Queue is full.
        return false
    }
    slot := &d.vals[head&uint32(len(d.vals)-1)]

    typ := atomic.LoadPointer(&slot.typ)
    if typ != nil {
        return false
    }

    if val == nil {
        val = dequeueNil(nil)
    }
    *(*any)(unsafe.Pointer(slot)) = val

    // 索引位置增加一位
    atomic.AddUint64(&d.headTail, 1<<dequeueBits)
    return true
}

func (d *poolDequeue) popHead() (any, bool) {
    var slot *eface
    for {
        ptrs := atomic.LoadUint64(&d.headTail)
        head, tail := d.unpack(ptrs)
        if tail == head {
            return nil, false
        }

        head--
        ptrs2 := d.pack(head, tail)
        if atomic.CompareAndSwapUint64(&d.headTail, ptrs, ptrs2) {
            slot = &d.vals[head&uint32(len(d.vals)-1)]
            break
        }
    }

    val := *(*any)(unsafe.Pointer(slot))
    if val == dequeueNil(nil) {
        val = nil
    }

    *slot = eface{}
    return val, true
}

func (d *poolDequeue) popTail() (any, bool) {
    var slot *eface
    for {
        ptrs := atomic.LoadUint64(&d.headTail)
        head, tail := d.unpack(ptrs)
        if tail == head {
            return nil, false
        }

        ptrs2 := d.pack(head, tail+1)
        if atomic.CompareAndSwapUint64(&d.headTail, ptrs, ptrs2) {
            slot = &d.vals[tail&uint32(len(d.vals)-1)]
            break
        }
    }

    val := *(*any)(unsafe.Pointer(slot))
    if val == dequeueNil(nil) {
        val = nil
    }

    // 注意:此处可能与 pushHead 发生竞争,解决方案是:
    // 1. 让 pushHead 先读取 typ 的值,如果 typ 值不为 nil,则说明 popTail 尚未清理完 slot
    // 2. 让 popTail 先清理掉 val 中的内容,在清理掉 typ,从而确保不会与 pushHead 对 slot 的写行为发生竞争
    slot.val = nil
    atomic.StorePointer(&slot.typ, nil)
    return val, true
}

Other Method

func init() {
    // 将 poolCleanup 注册到 runtime, 该函数会在 GC 执行前执行
    runtime_registerPoolCleanup(poolCleanup)
}

// poolCleanup 用于清理缓存对象,避免缓存对象一直不过期
// 缓存对象会在第二个 GC 到来前被清理
func poolCleanup() {
    // 由于在执行 poolCleanup 时,已经进入了 STW 状态,因此不能执行 runtime 相关函数以及新对象的创建
    // This function is called with the world stopped, at the beginning of a garbage collection.
    // It must not allocate and probably should not call any runtime functions.

    // Because the world is stopped, no pool user can be in a
    // pinned section (in effect, this has all Ps pinned).

    // Drop victim caches from all pools.
    // 将老的 pool 的 victim 全部清空 
    for _, p := range oldPools {
        p.victim = nil
        p.victimSize = 0
    }

    // Move primary cache to victim cache.
    // 将 poolLocal 的当前 local 移动到 victim
    for _, p := range allPools {
        p.victim = p.local
        p.victimSize = p.localSize
        p.local = nil
        p.localSize = 0
    }

    // The pools with non-empty primary caches now have non-empty
    // victim caches and no pools have primary caches.
    // 将现在的 pools 标记为老的
    oldPools, allPools = allPools, nil
}

var (
    allPoolsMu Mutex
    allPools []*Pool
    oldPools []*Pool
)

// Implemented in runtime.
func runtime_registerPoolCleanup(cleanup func())
func runtime_procPin() int
func runtime_procUnpin()

// The below are implemented in runtime/internal/atomic and the
// compiler also knows to intrinsify the symbol we linkname into this
// package.

//go:linkname runtime_LoadAcquintptr runtime/internal/atomic.LoadAcquintptr
func runtime_LoadAcquintptr(ptr *uintptr) uintptr

//go:linkname runtime_StoreReluintptr runtime/internal/atomic.StoreReluintptr
func runtime_StoreReluintptr(ptr *uintptr, val uintptr) uintptr
// src/runtime/mgc.go

//go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
func sync_runtime_registerPoolCleanup(f func()) {
    poolcleanup = f
}

func clearpools() {
    // clear sync.Pools
    if poolcleanup != nil {
        poolcleanup()
    }
    ......
}

func gcStart(trigger gcTrigger) {
    ......
    // clearpools before we start the GC. If we wait they memory will not be
    // reclaimed until the next GC cycle.
    clearpools()
    ......
}

总结

通过代码分析发现 sync.Pool有以下特性:

  • 为每个 P 绑定一个 poolLocal 对象,每个 poolLocal 中有一个 private对象。private对象只能被对应的 P 访问,因此访问 private时不需要进行加锁;
  • poolLocal中的shared是一个无锁、并发安全的环形链表。能够同时被不同的 P 访问;
  • 对象池中的对象在遇到的第二个 GC 时会被删除。

评论